to keep them from weighing out too quickly.

Place a funnel and some sand or grit on the surface to prevent dust from entering the particles. To prevent the sand from entering the air, place a piece of paper towel under the funnel. When the sand is dropped, it forms a layer of sand that prevents dust from entering the particles. The sand should be a mixture of sand and water. The sand used should be a mixture of sand and water. The sand used should be a mixture of sand and water. The sand used should be a mixture of sand and water. The sand used should be a mixture of sand and water.

The photograph shows the appearance of an approved building block. The building block shown is a new building block that was designed to be used in the construction of new building blocks. The building block shown is a new building block that was designed to be used in the construction of new building blocks. The building block shown is a new building block that was designed to be used in the construction of new building blocks. The building block shown is a new building block that was designed to be used in the construction of new building blocks. The building block shown is a new building block that was designed to be used in the construction of new building blocks.
CULBERRT SUNSHINE RECORDER

THE STANDARD ELECTRICAL SUNSHINE RECORDER

CULBERRT WEATHER BUREAU
THE ANEROID BAROMETER

The aneroid barometer is so constructed that it contains no fluid whatever, and its name is derived from the Greek word "anemos" (wind). The aneroid barometer is a very delicate instrument and requires careful handling and use.

THE MERCURY BAROMETER

The mercury barometer is read in millimeters of mercury. The needle is moved by the pressure of the atmosphere on the liquid mercury column.

THE BAROMETER

The barometer is used for measuring the pressure of the atmosphere. It is used in weather forecasting and to determine the pressure and type of weather.

GILBERT WEATHER BUREAU
so should be checked up occasionally with the instrument at hand.

INDICATIONS FROM THE BAROMETER

As to the barometer, it is usual in meteorology to take the reading of the barometer at a certain period in the day, and to compare it with the reading at the same hour on the previous day. This is known as the "barometric pressure," and it is an indication of the weather conditions. If the barometer reading is rising, it usually indicates that a high-pressure system is approaching, while a falling barometer reading suggests a low-pressure system.

DESCRIPTION OF THE DIY WEATHER STATION

The station is a simple project that can be built at home. It consists of a weather vane, a thermometer, and a barometer. The weather vane is used to indicate the direction of the wind, the thermometer to measure the temperature, and the barometer to indicate the atmospheric pressure.

HOW TO USE THE DIY WEATHER STATION

To use the station, first adjust the weather vane so that it points in the direction of the wind. Then, take the reading of the thermometer and the barometer. Compare these readings with the readings taken at the same time on previous days to get an idea of the weather conditions.

FACTORs TO CONSIDER WHEN USING THE DIY WEATHER STATION

When using the station, it is important to consider the following factors:

1. **Temperature:** The temperature can be used to indicate the type of weather expected. For example, a cold front is usually indicated by a drop in temperature.
2. **Humidity:** The humidity can be used to indicate the likelihood of rain. High humidity is often associated with rainy weather.
3. **Wind Direction:** The wind direction can be used to indicate the source of the wind. For example, a wind from the north is often associated with cold weather.

CONCLUSION

The DIY weather station is a simple and effective way to monitor the weather conditions in your area. By using the station, you can get a good idea of the weather conditions and make informed decisions about your daily activities.

REFERENCES

<table>
<thead>
<tr>
<th>Difference in Degrees Between Wet and Dry Balls</th>
<th>Reading of Dry Bulb Thermometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1</td>
<td>1.0</td>
</tr>
<tr>
<td>1 - 2</td>
<td>2.0</td>
</tr>
<tr>
<td>2 - 3</td>
<td>3.0</td>
</tr>
<tr>
<td>3 - 4</td>
<td>4.0</td>
</tr>
<tr>
<td>4 - 5</td>
<td>5.0</td>
</tr>
<tr>
<td>5 - 6</td>
<td>6.0</td>
</tr>
<tr>
<td>6 - 7</td>
<td>7.0</td>
</tr>
<tr>
<td>7 - 8</td>
<td>8.0</td>
</tr>
<tr>
<td>8 - 9</td>
<td>9.0</td>
</tr>
<tr>
<td>9 - 10</td>
<td>10.0</td>
</tr>
<tr>
<td>10 - 11</td>
<td>11.0</td>
</tr>
<tr>
<td>11 - 12</td>
<td>12.0</td>
</tr>
<tr>
<td>12 - 13</td>
<td>13.0</td>
</tr>
<tr>
<td>13 - 14</td>
<td>14.0</td>
</tr>
<tr>
<td>14 - 15</td>
<td>15.0</td>
</tr>
<tr>
<td>15 - 16</td>
<td>16.0</td>
</tr>
<tr>
<td>16 - 17</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Relative Humidity Tables | Continued

 Relative Humidity Tables

GILBERT WEATHER BUREAU
RAIN GAUGE
U.S. STANDARD.

LOCATION OF THERMOMETERS

The thermometer is of great importance in determining the local weather conditions. The temperature, X-Y, determined by the thermometer, is the basis for the current weather forecast. The thermometer is located at the top of the tower, with its sensor facing the wind direction.

THERMOMETERS

The thermometer is placed at the top of the tower, facing the wind direction. The temperature is determined by the thermometer, which is then used to determine the current weather conditions. The thermometer is protected from direct sunlight to ensure accurate readings.

THE FOLLOWING TABLE OF THE UNITED STATES WEATHER BUREAUX.

<table>
<thead>
<tr>
<th>Location</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>30</td>
</tr>
<tr>
<td>Chicago</td>
<td>28</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>32</td>
</tr>
<tr>
<td>Houston</td>
<td>35</td>
</tr>
<tr>
<td>Miami</td>
<td>37</td>
</tr>
</tbody>
</table>

These temperatures are used to determine the current weather conditions in the United States.
You can generally look for maximum

Temperature Is Recorded.

When maximum

You can generally look for maximum

Temperature Is Recorded.

When maximum

mean of a small interval.

end of the mercury. By

mark to the rear of the mercury.

hour, the small needle piece is drawn

Note: If these instructions are not carefully followed out, errors
The Gilbert Rain Gauge (Fig. 56).

The measuring stick is provided to measure the rainfall. A measuring stick is attached to the bottom of the tube in which the rain falls. The tube is filled with water and a glass stopper is placed at the top of the tube. The water level in the tube is marked at different levels to indicate the amount of rainfall. The essential parts of the Gilbert Rain Gauge consist of a metal frame, a glass tube, and a glass stopper.

The Absolute Humidity

The amount of water actually present in the atmosphere is called absolute humidity. The water vapor content of the air is expressed in terms of absolute humidity. The absolute humidity is the mass of water vapor in a given volume of air.

The Thermometer for Humidity in the Air

For such a record, the humidity is determined by comparing the dry bulb temperature with the wet bulb temperature. The difference between these two temperatures is called the dew point. The dew point is the temperature at which the air becomes saturated and condensation occurs.

When the Minimum Temperature is Reached

The lowest temperature at which condensation occurs is called the dew point. It is important to note that the dew point is not the same as the freezing point of water. The dew point is the temperature at which the air becomes saturated with water vapor.

The Relative Humidity

The amount of water vapor in the air is expressed in terms of relative humidity. It is the ratio of the partial pressure of water vapor in the air to the saturation pressure of water vapor at the same temperature and pressure.

The Dew Point

The dew point is the temperature at which the air becomes saturated with water vapor. It is the temperature at which condensation occurs.