HUMIDITY

What is the weather?

The smoke will spread out over a large area.

Experiments No. 3

be given here on.

The force of the earth is such as to pull objects inward. This is the force of gravity. It is the force that keeps objects on the earth. It is the force that keeps us from falling off the earth. It is the force that keeps the planets in their orbits. It is the force that keeps the moon in its orbit around the earth.

The force of gravity is weaker than the force of the wind. The wind can blow a leaf across the room, but it cannot blow a rock across the room. The wind can blow a leaf across the room because the leaf is lighter than the rock. The wind cannot blow a rock across the room because the rock is heavier than the wind.

The next observation—what happens at the bottom of the page.
and then lightning. The resulting zones of lightning, such as those over ball, shear, or shear over the edge of a cold front may be struck then those that remain
in edge of the cold front are not. lightning usually appears in two or more zones at the same time, the
resulting zones of lightning are composed of lightning’s own structure, lightning’s own structure, a
contradiction of the ground becomes possible, the ground becomes possible, the ground becomes
possible, and so forth.

DEW

Dew forms when the temperature of the ground falls below the dew point of
the surrounding air. When the temperature of the ground falls below the dew point of
the surrounding air, the water vapor in the air condenses on the surface of the ground,
forming dew.

SNOW

Snow forms when the temperature of the ground falls below the dew point of
the surrounding air. When the temperature of the ground falls below the dew point of
the surrounding air, the water vapor in the air condenses on the surface of the ground,
forming snow.

HAIL

Hail forms when the temperature of the ground falls below the dew point of
the surrounding air. When the temperature of the ground falls below the dew point of
the surrounding air, the water vapor in the air condenses on the surface of the ground,
forming hail.
TORNADES

CILBERT B. WEATHERBURN

GILBERT BROWN ENGINEERING
KINDS OF WINDS

Atmospheric Winds: Caught by the heating and cooling of the earth.

Mountain Breezes: Caught by the heating and cooling of the land.

Pressure Systems:

1. When the air over the land is cooler than the water, and the wind is not strong, the land is cooled, and the water is warmed. As the land cools, the air above it becomes denser and descends; the air above the water becomes lighter, and rises. As the air rises, it cools, and condenses to form clouds, which release rain. This is the formation of the sea breeze. If the wind is strong, it may blow from the sea to the land, and form a wind called the land breeze.

2. When the air over the water is cooler than the land, and the wind is not strong, the land is warmed, and the water is cooled. As the land warms, the air above it becomes lighter and descends; the air above the water becomes denser, and rises. As the air rises, it cools, and condenses to form clouds, which release rain. This is the formation of the land breeze. If the wind is strong, it may blow from the land to the water, and form a wind called the sea breeze.

Why We Get Such Heavy Rainfalls Sometimes:

Winds are caused as a result of differences in temperature between land and sea. When there is a strong difference in temperature, there is a strong difference in pressure, and winds are created. Winds can also be caused by differences in temperature between different parts of the same area, such as mountains and valleys. When the temperature is higher in one part of the area than in another, the air above the warmer area becomes lighter and rises, while the air above the cooler area becomes denser and descends. This creates a pressure difference, and winds are created to equalize the pressure.

Wind Energy:

Wind energy is a form of renewable energy that can be used to generate electricity. Wind turbines, which are large structures that spin in the wind, are used to convert the kinetic energy of the wind into electrical energy. This energy can then be used to power homes and businesses. Wind energy is a clean and sustainable source of power, and it does not produce greenhouse gases or other pollutants that can harm the environment.
THE FORCE OF THE WINDS

Very little friction on the water; because on land it meets with various obstacles, whereas it has the wind blows a great deal harder on water than on land.

VELOCITY OF WIND

A Sirocco: A desert wind.
A Squall: Due to the sudden disturbance in temperature.
Volcanic Winds: Due to volcanic eruption, which produces an external force.

DAY SIGNALS
NAME OF WINDS

GILBERT WEATHER BUREAU

GILBERT ROY ENGINEERING
FIG. 22. The Northwester Storm Warning. A white pennant beginning from the southwest indicates the approach of a storm of marked violence, with winds from the southwest. When a large red flag with black center displayed by day, or a large pennant above a red flag with black center displayed by day, or a large red pennant displayed by night, (FIG. 21a) indicates the approach of a storm of marked violence, with winds from the southwest. When a large red flag with black center displayed by day, or a large red pennant displayed by night, (FIG. 19a), indicates the approach of a storm of marked violence, with winds from the southwest.
The same pen that records the rainfall also records the number
the quadrant register.

The quadruple register includes a register of rainfall, a register of
the volume of rainfall, a small register for the amount of water
evaporated from the soil, and a register for the amount of water
condensed from the air. These registers are used to determine the
amount of water that can be used for irrigation and to determine
the amount of water that will be lost by evaporation and
condensation.

The rainfall register is used to determine the amount of rainfall
that falls on the land. The volume register is used to determine
the amount of water that flows into a river or lake. The water
amount register is used to determine the amount of water that
is stored in a reservoir. The water temperature register is used to
determine the temperature of the water that flows into a river or
lake.

The rainfall register is used to determine the amount of rainfall
that falls on the land. The volume register is used to determine
the amount of water that flows into a river or lake. The water
amount register is used to determine the amount of water that
is stored in a reservoir. The water temperature register is used to
determine the temperature of the water that flows into a river or
lake.
The Cumulus Cloud (Fig. 22). The cumulus cloud is characterized by its uneven, fluffy appearance, resembling puffs of cotton. These clouds are typically formed when there is a gentle, unstable air flow, often during fair weather. They are usually white or gray and can grow into cumulonimbus clouds under certain conditions. Cumulus clouds are often associated with good weather, but they can also develop into more severe types of clouds depending on the atmospheric conditions.

The Cirrus Cloud (Fig. 23). The cirrus cloud is one of the most distinctive types of clouds, often appearing as wispy, feathery strands high in the sky. They are typically made of ice crystals and are formed at high altitudes. Cirrus clouds can indicate the presence of a high-pressure system, but they can also form in the presence of low-pressure systems. They are often associated with clear skies and fair weather, although they can sometimes develop into other types of clouds.

The Stratus Cloud (Fig. 24). The stratus cloud is a type of cloud that forms a flat, gray layer across the sky. These clouds are often associated with stable atmospheric conditions and can indicate the presence of a front. Stratus clouds can bring light rain or drizzle, but they are rarely associated with thunderstorms. They are often seen in the spring and autumn when the weather is cool and damp.

The Altostratus Cloud (Fig. 25). The altostratus cloud is a type of cloud that forms a gray or blue-gray layer across the sky, often resembling a layer of paint. These clouds are associated with stable atmospheric conditions and can bring light rain or drizzle. They are often seen in the spring and autumn when the weather is cool and damp.

The Cumulonimbus Cloud (Fig. 26). The cumulonimbus cloud is one of the most dramatic types of clouds, often forming tall, towers that can reach high into the sky. These clouds are typically associated with thunderstorms and can bring heavy rain, lightning, and even tornadoes. They are often formed when there is a strong updraft of air, which can cause the cloud to grow rapidly and become very large.
DISTURBANCES OF THE ATMOSPHERE ARE CAUSED AS FOLLOWS: CYCLONIC

Atmospheric Disturbances

Upper clouds and the others are known as the lower.

The Chino, Cirro-Cumulus and Cirro-Stratus are known as the Precipitation in the Eye of the Storm.

The Chino-Cumulus (Fig. 39) in the lower and the Stratus

The Clouds are composed of alternate layers of gases.

The meander, which is known when the clouds break up and cut up. This is where people call

The word "cyclone" to most people immediately means a tropical