 about 6 inches long and $5 / 8$ of an inch in diameter. Arrange long and 3 or 4 inches each in diameter, or use two glass tubes Experiment No. 35. Make two paper tubes about 3 feet very closely and make a confusion of sounds. so close together that the sound waves follow one another

to the sound waves which strike the walls of the well or barrel

 SNOLIHY\&IATI

 not had experience to locate where a sound comes from in a a boat out in a fog. It is almost impossible for anyone who has

STYNDIS DOH

slower than through hydrogen gas. travels through air faster than through carbon dioxide gas but part of the sound waves that passes through the balloon. Sound sound is due to change in velocity and has been caused by that
 fused in passing through a concave lens. This refraction of diffuses them in exactly the same way as light waves are difsound waves being converged to a focus, the hydrogen gas tion of the experiment only with hydrogen gas. Instead of the Now exactly the opposite results can be obtained by a repelight waves are with a convex lens. on "Light.") The sound waves are converged to a focus just as action of the corivex lens on light waves. (See the Gilbert book Figure 47.) The cause of this is almost identical with the will find a position where it will amplify the sound. '(See between your ear and a watch, then move it back and forth you

 STMVM

aNOOS DO DNIEVGH GHN GIVHITIDVA THIM CNIM

85 PIA

travel faster and cause the wave front to change its direction ing sound wave is in warmer air than the upper part, it will temperatures of air. If the lower portion of a horizontally movlearned that sound travels at different velocities in different

 various shapes, usually with curved bottoms, the object being a limited number of tones. Resonators have been made in A straight-sided tube is a poor resonator in that it responds to

the surface of the water, Here it is reflected back to the prongs ing a condensation, which goes to the bottom of the tube or to The prongs, in vibrating, push the particles of air down, formand stimulated. In physics they call this glass tube a resonator. tune of the fork and you will find that the sound will be increased it reaches a position where the air in the tube responds to the fork in vibration and move the glass tube up and down until
 with water and into this insert a glass tube. Over the glass

эо 廿utof әчұ

 method and the one that was the origin of all Spiritualism was

TABLE RAPPING

sounds. places that are absolutely sound proof and where there are no been demonstrated that the sea shell will not emit sounds in sea shell will pick up sound waves and magnify them. It has

 spunos din yวฺđ II! shell, but it is not nearly as perfect a resonator as the sea shell. sounding box of the violin or guitar can be likened to the sea nothing better constructed than the shell as a resonator. The shell is because the shell is a wonderful sounding box. There is air waves, and the reason we can hear them so well in a sea the sea the noises in them are waves. These sounds are really cause some people imagine that because the shell is found in
 You are probably familiar with the sounds that are emitted IN THE SEA SHELL?

YVGH TM SEAVM GYIT GNOOS GHIL SATYIN IVHM
E
from moment to moment. The overtones of the lower notes and the beauty of them is that they can be changed appropriately chest and the cavities of the mouth and nose serve as resonators
 Perhaps the most important feature in vocal tones, however, the singer. length and tension of the vocal cords may be changed at will by free or natural vibration. It must also be remembered that the tion, which always results in a greater variety of overtones than however, we must remember that they act under forced vibrabass singer, for example, are only about an inch long. Of course, yet more wonderful when you consider that the vocal cords of a in overtones as those produced by the vocal cords. This fact is is capable of producing sounds that are so marvelously rich

MDIOA NWINOH MHI

when in contact with resonant bodies that magnified the sound. joints and ligaments which produced sympathetic vibrations nothing more than sound waves produced by articulations of entire world with these phenomenal manifestations. They were These girls became very expert and absolutely mystified the duced, the origin of which could not be detected by anyone. floor or wooden table, mysterious noises or rappings were prowere placed in contact with a resonant body such as a vibrating their feet they were able to produce noises and when their feet these two girls discovered that by disjointing certain bones in
 attempt to describe the interesting child play that took place and

 direction.

 another blow and produce a second wave. These two waves

 I will ask you to repeat the first experiment with the coil

or even grunts. impression of nothing but a series of clicks, coughs and sneezes, language consists almost entirely of consonants, giving one the not have this control over the upper resonators and hence their The lower races, however, such as the South Sea Islanders, do

 which enter into the sounding of vowels and which determine ators is felt, but in talking as well. The qualities of sound

It is not only in singing that the effect of our natural resonlungs, especially when singing the low notes. S!̣

 smooth wall. (See Figure 50.) Here you will observe the phebration, preferably on a sounding box, and move it toward a

Experiment No. 38. Take your tuning fork and set it in vidirection and the other in another direction, neither of them any
the worse for their encounter.

 tions produced by the vibration of the fork. flected back from the wall just in time to join other condensain the case of the resonating tube. The condensations are re-

 back from the wall just match up with rarefactions at the fork,

 but do not produce discord. more than seventy per second, they are somewhat umpleasant, greatest discord results. When the beats are fewer than ten or found that wrhen the beats are about thirty-two per second the

 quently the two forks will be in and out of unison. more fregreater the difference in the rates of vibration the more fre-

 pleasing to the ear. If you reason it out, you will see that the now set in vibration, the beats will be more frequent and less
 increase the load that fork will have to carry. This will still You may now press a piece of shot into the wax and thereby 7u!̣建 sauoวaq punos

 prongs of both forks are vibrating together, the sound waves

 brated at the same time, you will hear a sound whose intensity other fork. (Refer to Figure 34.) When both forks are viprongs of one tuning fork, it will not vibrate as fast as the

Experiment No. 40. If a little wax is placed upon one of the in the following manner position. The result of such a condition may be nicely shown when the prongs of both forks will be in the same relative forks may be vibrating at different rates, yet there will be times are more or less separated. In the same manner, two tuning times when both hands are together, but most of the time they

SIHT표

from the other prong of the fork. one set of waves is cut out and you are able to hear the sound each other. When the cardboard tube is put over one prong, and a rarefaction reach the bottom at the same time, neutralizing of the jar in the same manner. In other words, a condensation than the other, the two sets of waves do not reach the bottom sends a set of waves down the jar; but, when one prong is higher This experiment shows interference of air waves. Each prong The sound will now be heard very plainly again. of the fork, being careful not to touch the fork. (See Figure 51.) the fork in this position, slip a cardboard tube over one prong where the sound is practically inaudible, it is so faint. With its axis-that is, with a rolling motion. You will find a point fork horizontally over the glass tube and revolve it slowly about column so that it is in resonance with your tuning fork, hold the
 -Isn case, but the ear does not detect them as such, as in the case of
89 "Dit
 series of beats. The phenomenon of beats takes place in this
 with the other fork, placing it near the first one, as in Figure 52.
(Z8)

ig PIT

CMAOS YWMH TM MOH

 vibrations received on the drum to the internal parts.
 waves of air strike it-they set up a "to and fro" motion, vibratparts. When air waves tap on the ear drum-that is, when collecting the sound waves, directing them toward the internal
 The external ear, like the telephone transmitter, is shell-like in internal ear.

Our ear is divided into three parts: the external, middle and

99 DIUL

to the telephone transmitter. (See Figures 55 and 56.) anism which Nature has provided for hearing and its similarity

Figure 54.)

 important to be very careful with colds and particularly in the practically lose our hearing temporarily at least. Therefore it is in hearing. Sometimes the tube becomes so affected that we does not permit the free passage of air. Then we have difficulty this tube-allow inflammation to be set up and clog it up, which Some of us, when we have a cold-that is, a cold that affects

FIG. 56

tube is about $11 / 2$ inches long, and if your hearing apparatus is the middle ear and the throat is called the Eustachian tube. This free passage of air in and out. This short tube which connects inside of the throat to just back of the drum which allows the

