halfway between the poles. crowded together at the poles and spreading apart at a position to make long, circular lines reaching from one pole to the other, on the piece of paper as in Figure 12. Notice how the picture seems coupisod s!̣ł fo axmpod e meip
 each place and when we have compass needle come to rest in
 to a little more than the length pole, stopping at distances equal net, gradually toward the other starting at one pole of the magwriting paper. Move a compass, Take a bar magnet. Lay it on

Floating Needle and Bar Magnet. Small Needles Can Be Laid Gently on the
Surface of Water and Will Float.

 SII IASIHZNDVEN GYMHMM

 sult. See Figure 16
 bar magnets under the glass and
sprinkle filings on top and you
 together, we should see the lines or south poles, which are near ings on the glass over two north think that if we sprinkle the fil-

on their journey toward the opposite pole. See Figures 14 and 15.
 -эо pue 7 no sutus sau! -әェ әцL •әวeđs әчך แ! әโq!ssod se sәu!! Кшеш se 子sn! ภu!pmoло

 What happens? The magnetism has its effect through the glass on a piece of cardboard or paper and your magnet underneath. from the table without touching it with your hands. Put iron filings against a bottle full of iron wire or iron filings and you can lift it
 periment using a horseshoe magnet, and again you will see the little

 What happens? The little iron filings jump into curious forms top of it. Hold the glass up and place a bar magnet underneath it.
 NOIUDחUNI DIHUNDFTN
Always Attract Either Pole of a Magnet. ing no points or poles. Magnetic Substances Without Poles poles attract". It is caused by the ball being round; therefore havseems to dispute the statement that "Like poles repel and unlike will find there is attraction for both the north and south poles. This
Hold an end of one of your bar magnets near a steel ball. You mon materials and substances. experiment with these so we will content ourselves with more compelled from both of the magnet poles, but it is not possible for us to us which are called Dia-Magnetic because they apparently are re-
There are a few substances such as bismuth, antimony phosphorCobalt and nickel are also attracted by magnets. steel are the only common materials which magnetism will move. wood, paper, fibre, cloth. If you make a list, you will find iron and Take a piece of copper. Does it stick to the magnet? Try brass, attracted or repelled, so let us try a few experiments. scientists, we ought to discover whether any other things can be
 terials, but if we take a tin cup or iron dish and pour some of the iron filings on it, holding the magnet underneath, there is no effect. We can then say that magnetic material acts as a shield against the passage of magnetism, but non-magnetic material offers little resistance to magnetic force. This is good to remember when you carry a watch near any electric machinery or on the street cars. The best way to keep your watch from having its spring magnetized is to enclose it in a soft iron case. Some people use a hard rubber case but we have already found, by experiment, that this is
non-magnetic, and, therefore, does non-magnetic, and, therefore, does
not stop the force of magnetism.
 bar magnet and with the other hand
hold a piece of iron wire near one of the poles of the magnet, being careful not to touch it, as shown in
Figure 19. Touch the end of the Figure 19. Touch the end of the
iron wire to one of the other little comparison with iron wires, screws, etc yout try scratching a magnet, you will notice that it is very hard in iron, and especially hard steel, will remain magnetic for years. If experiment, we find that soft iron will not hold magnetism, but hard that some magnetic material loses its magnetism very easily. By magnetic material, and is called Induction. We have also found magnetic things strongly magnetized. This is done through nonhave learned two new things. First, that a magnet may make unif the magnet is removed, the second wire will soon fall off. We the first iron wire has the power to attract the second wire to it, but pieces of iron wire and see what happens. We have discovered that

 bar magnet and with the other hand not stop the force of magnetism.
 arry a watch near any elec-
effects of the induced action of the earth hold the poker north-south

 әшеร әцุ ұวerme IIIM spuว ч7oq u!ese uotitsod 7səM-7seə

 the compass at one end and
 7! lof 'səod qınos pue qinou
 that the poker has become

you hold it in a north-south direction and bring the needle near one
 and west, generally both ends will attract either end of the compass stove poker. If you hold it in a horizontal position, pointing east
 -セ.ाed su!p NOILDAGNI TVIEHSBYMHH
that it neutralizes these outside magnetic forces. of balls of soft iron placed in such a position around the compass adjusting, they are protected from the ship's magnetism by means that every little while the compasses have to be adjusted, and, in that they influence the magnetic needles of their compasses so much around you are magnetized. Steel ships are so strongly magnetic most all the iron and steel framework of buildings and bridges vert, by induction, any piece of iron or steel into a magnet. Al-
-
which will require currents of electricity.
We will discuss, a little later, a better method than any of these
make the ring revolve as long as the flame heats the iron. ly in front of the horseshoe magnet, as shown in Figure 22, we can cool section moves forward. If we place the lamp or candle directthe magnetic force while the cool parts are attracted. Therefore, the to turn. This-happens because the heated parts are not affected by placing a flame under one side of the iron ring, the ring will begin ported, as shown in Figure 22, in front of a horseshoe magnet. By iron wire in the form of a circle or by using a thin metal disc sup${ }^{86}$?

periment can be
made by bending an An interesting exheating it red-hot. de-magnetized by ing needle can be A magnetized seware heated too much. roughly or if they they are handled their magnetism if
Magnets lose

INSIITNDVIA $\mathbb{C N} F$ IVTH

 that it runs in a straight line in the same direction as the needle and clean. Hold the wire over the needle, as in Figure 23, so our haind, being sure that both ends of this wire are scraped bright terminal post of a battery and hold the other end of the wire in
 on its point.

 TASILTNDWIN-OMHOTHI

I

＂uotulsod ymnos ing post of the battery，the compass swings back to its north and to the current，because when we no longer touch the outside bind－ that the needle turns in the opposite direction．This must be due but under the needle and we find－what？You are ready to say

Now Mr．Oersted asks us to hold the wire in the same position turns W－West． this word are explained as follows：S－South，N－North，O－Over， To remember this，think of the word＂Snow＂．The letters of this to be correct． end of the compass needle point？I say＂West＂and you will find current flows from south to north，what direction does the north If you hold this wire over the compass in such a way that the toward the outside terminal post which is called negative or＂－＂． is called positive or＂十＂and the electric current passes out from it In the study of batteries，we find that the middle binding post as if some magnetic force is pulling it． needle，what do we see？The needle immediately swings around terminal post of the battery．If the wire is close to the magnetic

 - имор sәo. $7!$ иәцм Кем

 membering what we found about the way which the current flows together near the wire and thinner as they go farther away. ReThe iron filings arrange themselves in little rings thicker and closer Figure 27 shows how the results of this experiment will look. as possible. What happens? to flow, drop a few iron filings on the cardboard as near to the wire more will give a much better effect. After the current has started bare ends of the wire to a battery. One dry cell will do, but two or

HIIM H IIMOEV BDYOA DIH NDWUN

 27 DIISthe effect of the earth's magnetism, we

-ธеш ом7 әчд әреш әлец әм иәчМ say they are "astatic."
is the strongest pull. See Figure 26. than the other the rope moves toward the direction in which there

им

 08 •1.

around single loops of wire act upon each other to form the mag-
netic forces shown in Figure 31 . result is similar to that produced by a bar magnet. Magnetism as in Figure 30, then try again with iron filings or the compass. The

-dеч ұечм punof әлец วM -วILM әц户 07

 рие әл!̣м әцд punoıe suoţs

 in the same direction as the

 Figure 32 so that you will have the current flowing in one direction by remembering the right hand rule given above in connection with produce a south pole and the other a north pole. This you can do to connect the coils with the battery so that the lower end of one will must be careful and use soft iron for the yoke and also remember one of these devices you them. If you make
 pədeqs әочэวsıоч e pair of these coils with \mathbb{N} e smoqs if amsith results shown in Figure 33. a battery touch the ends in ${ }_{3}$ a pile of iron filings and you will get the core together. When you have connected these coils together and to wire on a sleeve of metal with round end pieces of fibre to hold the rial. Figure 33 shows two coils wound with No. 26 cotton covered even winding copper wire around tubes of some non-magnetic mateing some insulaied copper wire on ordinary sewing thread spools, or wire to each other and to a battery. These coils can be made by windI8 : DII
 direction in which the current is flowing, the thumb will point

