

PART I
The history of knotting dates back to the early inhabitants of the earth, when some kind of knot was used to join animal tissues and plant fibers together. These took the place in those days of the
 at the present time.
Up to 1847 no really scientific study had been made or produced on
the theory of knots. In the above year, the first scientific work appeared. This was prepared by a German, named Listing, who is credited with being the founder of the Theory of Knotting. His book was most original and was not entirely devoted to the subject, but his treatment of knots, as far as he went into the subject, was based upon the elementary notion of twisting one thread around another. Later works appeared

 of knots and compiled a splendid volume.
In a scientific sense, a knot is an encless physical line, which cannot
 interlacement of the parts of one or more slender flexible bodies, as cordage, forming a lump or knob."
A very great number of knots have been invented from the mind and by the skill of man. These knots are in daily use and upon their strength and correct formation depend the lives of hundreds, yes thousands, of workmen employed in the building trade; also seamen and those employed in other pursuits. There are a very large number of knots, and these are classed under the heads of simple, fancy, bends, hitches, etc. It is not intended to deal in this Manual with any but the most common and useful knots. We have particularly selected those knots that are in almost
 in a very few instances a description of how these knots are tied has been
 clearly outlines the course of the rope in the formation of the knot. The

practice in forming the knot to resemble the one shown would lead to a quicker grasp of the manipulation of all ropes and cordage.
The value of a knot lies in the ease with which it may be formed and untied and its reliability when a strain is placed upon it. Therefore, you will be repaid for the time spent in learning to make the knots and hitches shown in this book; especially in the time and material you will be able to save. You will also avoid breaking your finger-nails and teeth in attempting to untie the knot or knots which you tied incorrectly. It is not always the number of turns in a knot that adds to its security; but, on the contrary, it is the effectiveness of the nip, by which is meant the pressure on the rope where it is bent around or held by something, or where there is simply a sharp bend or turn in a rope. This should be borne in mind when studying the formation of the knots described and when using the knot in actual work.

In distinguishing between varieties of cordage, it is well to bear in mind that those having a circumference of an inch or more are usually known by the general name of rope; those of smaller dimensions, twisted, are called cords, twines, and lines; those of the very smallest dimensions are termed thread or doubled yarn. When the size of a rope is mentioned, it signifies the circumference of the rope. For example, by threeinch rope we mean rope with a circumference of three inches, not three inches in diameter, as many people might think.

Rope is made from many substances, but particularly from vegetable fibers. Where strength, suppleness, flexibility, and durability are required in a rope, the common hemp is the most satisfactory material and is, therefore, used extensively: There are many kinds of hemp used in rope-making. The Manila hemp, because of its tenacity, is used principally for the manufacture of heavy cordage. Varicus other kinds of hemp, used commonly in rope-making, come from South America, New Zealand, and the East Indies. Ropes and twine of cotton are manufactured in large quantities for use in driving bands for machinery. A number of rope-makers, because it is cheap, use jute-a glossy fiber obtained from plants of the East Indies. This lacks strength and dura-
bility, and is used chiefly in making sacks, burlap, and the cheaper varieties of twines. Coir or cocoanut fiber is largely used in the making of drift-nets, life-bucy lines, etc., because of its being light and buoyant.

Rope is composed of a certain number of strands, usually three or more, which are formed of several yarns. The prepared fiber twisted to
the right forms the yarns and the thens laid up left-handed form the strands. Three strands twisted thatether right-handed form a "hawserlaid" rope. Three "hawser-laid", "uspes twisted to the left form a cable or a "cable-laid" rope. A "shropitilaid" rope consists of four strands twisted around a central strand or:core.
The object of twisting fibers together is that by mutual friction they may be held together when a strain is applied to the rope. Twisting diminishes the strength of a rope; therefore, it is of considerable importance to get the proper degree of twist and to lay up the yarns carefully so that an even strain will be brought to bear on every part, for if they are twisted too hard the cord will break. The twist in each suc-
cessive operation of rope-making is in a different direction from the preceding one. This alternation of direction serves to keep the fibers parallel to a great extent and thus utilizes the combined strength of the fibers to as great a degree as possible. The degree of twist given to a rope is such that the rope is from three-fourths to two-thirds the length
of the yarn composing it. Therefore, the lighter the twist the greater in proportion, is the strength. A three-stranded rope will bear a greater strain in comparison with its size than any other of the same material. Investigations have proved that "shroud-laid" and "cable-laid" ropes are about one-fifth weaker.
Years ago it was a very common practice in rope-making to tar the rope with a special tar, called Archangel tar, to prevent decay; but it has been found that untarred rope, especially that made from Manila
hemp, which withstands the influence of water very well if if in constant service, is about one-third more durable than when tarred, and will also keep longer in storage. Tarring diminishes the strength of a rope and should only be resorted to where the rope is to be constantly exposed to water. FIGURE 1. The most common and the simplest knot made is the the majority of other knots. It is used to prevent the strands of a rope from unlaying. For this purpose it must be drawn taut. It may serve as a stopper knot in the middle of a rope, to prevent the slipWhen used as a stopper knot in a ring bolt on each side of the ring; but it must be larger than the diameter of the ring to prevent its being pulled through the ring.
GILBERT 㑔NOTS AND SPLICES 9
draw taut. A little practice will enable you to make this knot perfectly. In tying a life-preserver about the waist this knot is always used. FIGURE 4b.
This is termed a
Reef Knot, and
has the same uses
as the Sailor's
Knot.
FIGURE 5. Shows the Reef Knothalf made.
FIGURE 6. In making the Sailor's or
Reef Knot, if the ends of the rope are not passed over and under the standing part of the rope correctly, a granny, lubber's, or calf knot results. It is a very hard and fast rule on board a
 sailing vessel never to tie this knot, for when a it it slips
 less. This knot is used very often on the stage in the trick called "Herman's Knotted Handkerchiefs."

FIGURE 8. The Overhand Rosette Knot or Bow is a modification of the Sailor's Knot. This knot is used often to join the ends of two ropes; but should not be used where the strain on the

FIGURES 9 and 10. Fig. 9 shows the whows the knot completed. It is used for joining the ends of ropes. It derives its name from the fact that when the ends of the thread on a loom break, the weaver ties them together rapidly,
using this kiot; and the loom is set in motion again. This knot is also termed

GILBERT MAGIC SERIES
This knot is never used on board a vessel, as it may catch in the halliard blocks and before the sail can be lowered or raised the vessel may capsize. On board ship, instead of using this knot, the ends of This knot is never used at the end of a reef pointhine.
the tearing of the sail.
FIGURE 2a. The Dotbie, Treble, or Fourfold Knot is a modification of the Overhand Knot and is made by continuing the over the standing part and through the loop or bight before drawing taut. This knot is used on the thongs of a whip; about

Fig. 2a
a dock; to prevent the strands of a rope
unlaying, and has much the same use as
the Overhand Knot.
FIGURE 2b. Shows the knot drawn taut.
FIGURE 3. This knot is known com-
monly as the Figure-of-Eight Knot. It is used for much the same purposes as the above knots. A distinct advantage lies in the use of this knot because of This knot is often used where a Bowline Knot (see Fig. 17) should be used, especially by those who are unacquainted with the tying of knots. This is sometimes called a Flemish Knot.
 when tying the ends of a reef earing, when shortening a sail, and. for join-. ing the ends of two ropes. This knot Fig. 4a can be made and undone with great rapidity.. It is a perfect knot when made correctly. If you will observe the photograph you will note that the two ends at the right are passed under the standing part and the two ends at the left over the standing part. This standing part of the rope. It is important over and one end under the size, for if made with ropes of different sizes the knot slips and will not
GILBERT KNOTS AND SPLICES 11
are in the vicinity of a dock or pier, you will notice that the majority of fastenings to the dock post are accomplished by means of eye knots. An Overhand Eye Knot is made with the ends of the rope around the standing part of the rope, forming Eye Knot or Water Knot, used for bending two lines together, will, if properly made, never pull out. The line will break first. When drawn taut the lower knot jams against the upper and holds se-

 very similar to the Rosette Knot or Bow (Fig. 8), except that it is made with a single rope. This knot will not bear a great strain. When drawn taut it is advisable to put a toggle into the center of the knot, so that it may be untied quickly and easily.
 in any place where an eye is needed; and it is impossible for this knot to slip. When hoisting a man aloft, this knot is always used, the bight serving as a chair. On board a vessel it is customary to have this knot already made in a rope, left for- . Fig. 17
ward and aft, in case a person falls overboard. The rope is out; the person crawls into the bight and is lifted in a sitting posture up the side of the ship.
FIGURE 18. This is a Bowline Knot, tied with two parts of rope and passed through the single bight. Often this
is termed a Bowline on a Biglit, from the fact that it passes through the loop.
 u!o! of pue วunoq aq of s! u!eits zeวss

GILBERT KNOTS AND SPLICES 13

 method of tying when towing a disabled car. A modification of the Builder's Knot is termed a Clove Hitch, and is so termed when the
 this knot is commonly called, is used for unloading lumber from a boat or any other type of carrier. Several pieces of timber may be carried in the bight and the hitch may be cast off quickly. The greater the strain on the rope, the more securely is thie timber held.
FIGURE 24. A Killick Hitch is an adaptation of the Timber Hitch, be. ing made with a single half hitch
thrown over the timber or killick after the Timber Hitch is tied and hauled taut. A killick is a term used chiefly by seamen for an anhitch is used in bending a mooring rope to a killick. Along rocky
 in the crevices of a rock, a killick or large stone is thrown out which holds the boat fast. A killick is never used for mooring a large
vessel.
FIGURE 25. Rolling Hitch. Often this hitch goes by the name of the Magnus Hitch. A common use for the Rolling Hitch is bending one line around the standing part of another, where the strain is drawing lengthwise of the rope. There is a very slight tendency to slip. This hitch is chiefly used on
board ship for putting a tackle on a chain to tached. Invariably it is the method used to bend a line to a chain. knot, is made with two round turns around a spar or spar boom and
GILBERT $\mathbb{K N O T S}$ AND SPLICES 15

to the weight of the fish.
FIGURE 31. The Blackwall Hitch. You will often hear it
called a Wall Hitch. It is a temporary method of securing a rope to a
hook and when hauled taut it jams the end of the loop against the back
of the hook and holds it firmly. It is not used where great strain is placed
on the rope. In its stead a Cat's-paw, or Racking Hitch would be used
to bear the severe strain.
 Hitch is always used.
FIGURE 33. Stationer's Knot. This is a very useful knot for tying up parcels, because of the ease and rapidity with which it may be tied and untied. In nearly every store this type of knot is used by. the clerks in tying up bundles.

