discharge runs up into the wires and down into the ground, a certain electrical field is made between the antenna and the earth. This strain is the beginning of a wave which extends out from the antenna in all directions to the receiving station. Fig. 6 illustrates

 at B, which is the receiving.

THE RECEIVING

 Fig. 6
them an electrical charge similar to the one which we put into the sending antenna. At the same time, the wave has proceeded through the earth connection, so that both the wave through the

∞

the connecting phone gives us the instrument in which we hear the wireless signals.
You have seen how it is possible to send out a wireless wave from one antenna through the ether to another, induce a current in this, have it operate through a detector, and a phone, and back through the ground to the sending station. In order that you might more easily understand this first principle of wireless trans mission, we have purposely left out a great many terms, which might only confuse you. The apparatus described is the simplest with which we can explain wireless communication. In order that we may exchange ideas by wireless, we send the waves out in a series of long intervals or short ones. The long one is a dash when received or sent; the shorter, a dot. In this manner, by means of a code,
we are able to transmit words and messages by wireless telegraphy.
का
WIRELESS TELEGRAPHY

[^0]WIRELESS TELEGRAPHY 41 ${ }^{\text {H. }}$ OSCILLATION COMPLETE
With the oscillation transformer. The energy is transferred from
the primary circuit to the secondary circuit by means of electro-
magnetic induction.
When an electric current flows through a wire, it is accom-
panied by a series of magnetic lines of force which surround the

the wave length of the antenna without thie secondary coil in the

 stations operate on 300 and 600 , while the Government stations
 and 1,500 meters. The big Government station at Arlington, wave length of 2,500 meters.
THE SPARK GAP

 first as they are connected in the circuit. We supply the condenser transformer. The current, which is supplied to this step-up device, is broken into dots and dashes by means of a telegraph key. SENDING APPARATUS
Now that we have considered the different units of the sending
set, we can connect them all together and consider its operation

 of force move. That is, in instead or they will set up an electrical the magnetic line case of our primary and secondary, a similar current. In thing takes place. The current flowing in the primary circuit creates magnetic lines of force, and these, in turn, set up an elec trical current in the secondary circuit.
Frical current 12, 13, 14, 15 and 16 tell the whole story. They show the four stages which accompany a comparge and the current going gap. Fig. 12 s. As the current passes, it goes into Fig. 13, which shows the magnetic lines of force around the gap and oscillation transformer. Fig. 14 shows the change reversed, and ing. the circuit back to the original case. circuit back to the original case.
As the magnetic lines of for primary circuit brealk down, they cut the wires in the secondary of the oscillation transformer and a current is induced. This current oscillates just as the condenser curre the ground, sending out the wireless waves.

SENDING WAVE LENGTHS

 used, we can increase our knowledge if we have some circuit, we the actual length of these waves. 8×10 inches, coated on each have for a condenser ten glass plates, x d side with tinfoil, 6×8 inches the oscillation transformer, which is $8 \frac{1}{2}$ inches in diameter, we send out a wave which is approximately 200 meters, or 657 feet.* The wave length of an antenna winh the the secondary coil may be found approximatel meters and multitotal length of the antenna and groun an and antenna with a length of 65 feet, a lead of 25 feet, and a ground connection of 30 feet, ло才 siəłəur qLi fnoqe qәล วм *1 meter $=39.37$ inches or approximately $3 t$ feet.

SOLVYVddV DNIAIGOGY

What takes place in the receiving apparatus is not unlike that นот!? transformer, we have a receiving transformer or loose coupler. Its work is similar to that of the oscillation transformer at the sending end. The receiving transformer has a primary which consists of a number of turns of wire connected to the aerial and the
 Let us follow the wave as it comes in from the antenna. When the electrical oscillations are received, they are similar to the cur-
 on different wave lengths. receiving a wave 300 feet long, the secondary is adjusted so that
t will receive a wave of similar length. When the two circuits comprised of batteries, spark coil, key, condenser, gap, cscillation
nex

$$
\|^{\text {AERIAL }}
$$

 many turns of wire. That is, we can add wire to the aerial by
The current which is received in the primary sets up a similar current in the secondary, and here again the amount of wire can wave length the same as that of the primary. If the primary is

 are tuned alike they are said to be "in tune," or "in resonance." be exchanged between them. In other words, we can get the full strength of signals from the primary to the secondary.
GILBERT BOY ENGINEERING

as a whole. Fig. 18 gives a complete hook-up of a sending set transformer, aerial, and ground. Let us trace the course of the current and find out just The current which flows through the

coil is interrupted by means of a vibrator and it is stepped up in voltage from about ten volts to 20,000 . In condenser, and the electrical energy is stored up until it rearnent a point where it can jump the gap. In crilation transformer, setting passes through the primary of the cut the turns of the secondary of the oscillation transformer. The lines of force disappear and a current is induced in the aerial circuit. This current turn creates the wireless waves which travel out from the aerial and through the ground in all directions.
of the crystal. The fine wire strikes a spot which is more sensitive
 less sensitive. We may find a great many sensitive points on one Galena is one of the most sensitive detectors, but very delicate and

 วә! ' sif every experimenter has plenty of room to try his skill in this direcreceive signals over distances of 75 to 300 miles on a piece of coal. CONDENSERS
 sending. It is possible to connect a condenser across the primary or secondary of the receiving transformer and increase the wave lengt for receiving signals. In actual practice, a variable condenser is used. condenser, air acts as the insulating material, and the capacity is made large or small depending on the amount of area
TELEPHONE RECEIVERS
We have succeeded in tracing the wireless waves to the secondary of the loose coupler. If a pair of 'phones is connected, we would not be able to hear any signals. The reason is clearly shown when we think of the nature of the current. The current is oscillating at a very rapid rate; in the neighborhood of $1,000,00$ times per
 Fig. 21
telephone receivers, Fig. 21, at the rate of $1,000,000$ times per second, it would be moving so woise so very high in note we should be unable to hear it. To make the signals audible, we put in the circuit a detector. See Fig. 23.

DETECTORS

 audible. The manner in which it does this is interesting, and one cannot understand how a set works without considering it. The current which comes in is similar to the illustration in Irg. The detector has a peculiar property of allowing the other. fow tration already mentioned. This decreases the frequency and the sounds are allowed to act in groups which become audre. The crystal consists of some mineral such as silicon, carborundum, galena, or even common coal. One connection" is firmly fixed, while the other is a fine wire with which we "feel" over the surface

[^1]
GILBERT BOY ENGINEERING
It is more customary to connect the
 circuit since it enables sharp turSmall condensers are often used in connection writh the telephones when a crystal detector is employed. The effect here is often to increase the loudness of same the tone is changed slightly.

AERIALS

In a wireless set, the aerial or antenna is a device on which the electro-magnetic waves are received. When the waves flow past the antenna they create an elec-
 through the antenna to the grounde into account the length of erecting an antenna, you must take into account "Sending Wave waves which you expect to receive. wave length of an antenna
may be calculated. its antenna which are 450 and 600 feet high. The majority of amateur stations have antennas which are under bery effective for For ordinary work, an aerial 50 feet high will the conditions where amateur use. Its length usually depends ours stretch their aerials it is to be erected. In some cases to tree, and when no suitable from house to house, or from house to . The length of an antenna,

to 200 feet long. As to the number of wited in receiving for one wire antenna or six. In the case of sending, the difference is more marked. The more wires in the antenna, the greater help is given to the sending sed.
In aerials which have more than one wire, they should be spaced

[^0]: CHARGE
 Fig. 12
 in motion with a hammer ready to tap it at the proper moment, so that it will be kept swinging. This is just what the primary

[^1]:
 apart. The usual construction brings the sending or receiving switch which connects the ane part of the antenna which connects from the main wires to the apparatus is called the lead-in. An antenna construction of suitable size is shown in Fig. 25.

